\qquad Class: \qquad
\qquad
1 Solve the equation for the indicated variable.
$A=\frac{\pi d^{2}}{2}+\pi d h ;$ for d

2 Solve the equation for the indicated variable.
$\frac{1}{r}+\frac{3}{1-r}=\frac{6}{r} ;$ for r
3 Solve the equation for x.
$b^{2} x^{2}-3 b x+2=0 \quad(b \neq 0)$
4 Solve the equation for x.
$b x^{2}+14 x+\frac{49}{b}=0 \quad(b \neq 0)$
5 Find all values of k that ensure that the given equation has exactly one solution.
$k x^{2}+32 x+k=0 \quad(k \neq 0)$
$k=$ \qquad

6 The sum of the squares of two consecutive even integers is 1060 . Find the integers.
\qquad (?)
7 A small- appliance manufacturer finds that the profit P (in dollars) generated by producing x microwave ovens per week is given by the formula $P=\frac{1}{10} x(200-x)$ provided that $0 \leq x \leq 60$. How many ovens must be manufactured in a given week to generate a profit of $\$ 750$?
$P=$ \qquad ovens per week
\qquad Class: \qquad Date: \qquad
8 Two fishing boats depart a harbor at the same time, one traveling east, the other south. The eastbound boat travels at a speed 3 mi / h faster than the southbound boat. After two hours the boats are 30 mi apart. Find the speed of the southbound boat.

\qquad mi / h
9 A $14 \frac{1}{6}$ - foot ladder leans against a building. The base of the ladder is $2 \frac{1}{6} \mathrm{ft}$ from the building. How high up the building does the ladder reach?

\qquad

