Parent Functions \#2

Original Function \#1: $y=\frac{1}{x}$
Original Function \#2:

$$
y=x^{5}+8 x^{4}-11 x^{3}-142 x^{2}-80 x+224
$$

Original Function \#3: $y=\sqrt[3]{x}$
Original Function \#4: $y=3 x^{3}-11 x^{2}-62 x+120$

- Adjustment A: $f(-x)$
- Adjustment B: $-f(x)$
- Adjustment C: $f(x+5)$
- Adjustment D: $f(x-3)$
- Adjustment E: $f(2 x)$
- Adjustment F: $3 f(x)$
- Adjustment G: $f(x)+4$
- Adjustment H: $f(x)-7$

Directions:

- Using Maple as a guide, hand draw 32 graphs on graph paper
- You use 8 pages to complete this assignment
- Each page will contain 4 graphs
- Each page will center on one of the 8 function adjustments above
- On each of the four graphs you will include two functions, the original and the adjusted function which is the center of that page
- For each function you graph (8 per page), you must list all x-intercepts and y-intercepts
- For each graph, use at least three points to embelish the validity of the scales of the x and y axes
- All x-intercepts and y-intercepts must be shown
- All infinite behavior must be demonstrated

Useful Maple:

Assuming we have two functions, $f \& g$, in terms of x

- To plot a function:

$$
\operatorname{plot}(f, x=-10 . .5, y=-20 . .50, \text { discont }=\text { true, color }=\text { red })
$$

- To plot two functions: $\operatorname{plot}([f, g], x=-10 . .5, y=-20$..50, discont $=$ true, color $=[$ red, blue $])$
- To find the zeroes of a function:

$$
\begin{aligned}
& \text { solve }(f=0, x) \\
& \quad \operatorname{subs}(x=0, f)
\end{aligned}
$$

- To find the y-intercept of a function:
- To turn an exact number (a) into a decimal: evalf(a)
- To input a random variable into a function (defined for x):

$$
\operatorname{subs}\left(x=t+\frac{a}{3}, f\right)
$$

