Problem Set \#7 (Due Thursday, Oct 11th)

1. Two students attempted to solve a quadratic equation, $x^{2}+b x+c=0$. Although both students did the work correctly the first miscopied the 'b' term and obtained the solution set $\{-6,1\}$. The second student miscopied the 'c' term and obtained the solution set $\{2,3\}$. What is the correct solution set? (Note: a solution set is just the set of possible values for x)
2. What is the sum of the 8 eighth roots of 2 and the 12 twelveth roots of 1 ?
3. Both roots of the quadratic equation, $x^{2}-44 x+k$ are primes. What is the sum of the possible values of k ?
4. Find all solutions to the following equations: $3^{2 x+2}-3^{x+3}-3^{x}+3=0$ and $8^{x^{2}+3 x+10}=4^{x^{2}-x}$
5. If $9 n^{2}-30 n+c$ is a perfect square for all integers n, what is the value of c ?
6. Use a substitution to solve $\left(x^{2}-3 x\right)^{2}-\left(3 x^{2}-9 x\right)=4$
7. The product of three consectuive positive integers is 8 times their sum? What is the sum of the squares of those integers?
8. How many ordered pairs of integers (a, b) satisfy fall all of the following inequalities:

$$
a^{2}+b^{2}<16 \text { AND } a^{2}+b^{2}<8 a \quad \text { AND } a^{2}+b^{2}<8 b
$$

9. Find $x y$, given that $x^{4}-y^{4}=(-35-72 I), x^{2}+y^{2}=(-11-10 I)$, and $x-y=(2-5 I)$. (Recall: $I=\sqrt{-1}$)
(For Problem 10, Note you will wish to use the following formula for the area of a triangle with sides $\mathrm{a}, \mathrm{b}, \mathrm{c}: A=\sqrt{s(s-a)(s-b)(s-c)}$ where s is the semi-perimeter)
10. The lengths of the sides of a triangle are integers and the area is also an integer. One side is 13 and the perimeter is 32 . What is the longest side? Find the median side of another triangle which has longest side 73 and a perimeter 150.
