16. If $f(x)=\sqrt[3]{x-1}+1$, what is the y-intercept of the graph of $f^{-1}(x)$
A. 0
B. 1
C. 2
D. 3
E. 3.3
17. If $f(x)=2 x-5$ and $g(x)=\frac{1}{6+x}$ then $f g(2)=$
A. 29
B. $\frac{1}{8}$
C. $\frac{29}{18}$
D. 47
E. $-\frac{1}{8}$
18.. If $f(x)=\sqrt[3]{2 x^{3}-5}$ then $f^{-1}(2.5)=$
A. 2.37
B. 5.12
C. 2.97
D. 1.74
E. 2.18
18. If, for all real numbers $x, f(4 x-8)=x-2$ then $f(x)=$
A. $\frac{x}{4}$
B. $4 x-4$
C. $\frac{x}{2}+2$
D. $\frac{x}{2}-2$
E. $2 x-4$
19. If $f(x)=\sqrt[3]{x}$ and $f(g(x))=-\sqrt{x}$ then $g(x)=$
A. $4 x$
B. $2 x$
C. $2 x^{2}$
D. $\frac{x}{2}$
E. $-x^{3}$
20. If $f(x)=\frac{x+1}{3}$ what is $f^{-1}(3 f(2))=$
A. 0
B. 2
C. 6
D. 8
E. 12
21. Anne and Barbara together can do a job in 3 days; Barbara and Connie can it do in 4 days; and Anne and Connie can do it in $\frac{30}{7}$ days. The number of days it would take Anne to do the job alone is:
A. 1
B. 3
C. 6
D. 12
E. 2.8
22. Which of the following does not describe a function which has a proper inverse?
A. It passes the vertical line test
B. It passes the horizontal line test
C. It is one-to-one
D. It can be symmetric about the y-axis
E. They all describe a function with an inverse
23. Suppose $f(a+b+c)=f(a)+f(b)+f(c)-4$, what is $f(0)$?
A. 0
B. 1
C. 2
D. 3
E. None of these
24. Given that $f\left(\frac{x}{a}\right)=\frac{f(x)}{a}$ for all real numbers a and $f(4)=12$ find $f(6)$
A. 15
B. 18
C. 21
D. 24
E. None of these
25. Find $f(x)$ if $f(x)+5 f\left(\frac{1}{x}\right)=3$
A. 2
B. 3
C. 7
D. 9
E. None of these
26. Let $\{x\}=x-[x]$ denote the fractional part of x. If $z=\frac{2\{\sqrt{2}\}^{2}}{\{\sqrt{3}\}}$ what is $[z]$
A. 0
B. 1
C. 2
D. 3
E. None of these
27. If $f(3 x-1)=36 x^{2}-33 x+14$ then $f(x)$ is some polynomial. What is the sum of the coefficients of that polynomial?
A. 10
B. 12
C. 14
D. 15
E. None of These
28. If $f(n+1)=(-1)^{n+1}(n-2) f(n)$ for all integers greater than 0 and $f(1)=f(1986)$, compute $f(1)+f(2)+f(3)+\ldots+f(1985)$
A. 300
B. 311
C. 321
D. 331
E. None of These
29. If $f(x)=x^{2}+x-1$ for $x \geq-2$ and $g(x)=x^{2}-1$ for $x<5$ then what is the domain of $f \circ g$?
A. $[-2,5)$
B. $[-2,2)$
C. $(-2,2)$
D. $(-2,5)$
E. None of These
