- 1. If $x^2 + y^2 = 2xy$, then x must equal
 - a. -1
 - b. 0
 - c. 1
 - d. -y
 - e. y
- 2. Which of the following has the greatest value?
 - a. 1.73⁹⁹⁹
 - b. 2⁷⁹⁹
 - c. 3⁵⁰⁰
 - d. 4⁴⁰⁰
 - e. 250¹⁰⁰
- 3. Which of the following tables represents a function?

I.	Input	Output
	1	4
	2	4
	3	6
	4	6

I	nput	Output
	1	3
	2	3
	3	3
	4	3

Input	Output
1	3
1	4
2	5
3	6

III.

- a. None
- b. I and II
- c. I and III
- d. II and III
- e. All of them
- 4. Which of the following represents the solution set of $|x^3 8| \le 5$?
 - a. $-1.71 \le x \le 1.71$
 - b. $0 \le x \le 3.21$
 - c. $0.29 \le x \le 3.21$
 - d. $1.44 \le x \le 2.35$
 - e. $6.29 \le x \le 9.71$
- 5. If $f(x) = 2x^5$, then which of the following must be true?

$$I. \quad f(x) = f(-x)$$

$$II. \quad f(-x) = -f(x)$$

III.
$$\frac{1}{2}f(x) = f\left(\frac{1}{2}x\right)$$

- (A) I only
- (B) II only
- (C) I and III only
- (D) II and III only
- (E) I, II, and III

6. What is the distance between the *x*-intercept and the *y*-intercept of the line given by the equation

$$2y = 6 - x ?$$

- a. 3.67
- b. 6.32
- c. 6.71
- d. 7.29
- e. 8.04