1. Let f be a function for which $f\left(\frac{x}{3}\right)=x^{2}+x+1$. Find the sum of all values for z for which $f(3 z)=7$
A. $-\frac{1}{3}$
B. $-\frac{1}{9}$
C. 0
D. $\frac{5}{9}$
E. $\frac{5}{3}$
2. The lines $x=\frac{y}{4}+a$ and $y=\frac{x}{4}+b$ intersect at $(1,2)$ what is $a+b$?
A. 0
B. $\frac{3}{4}$
C. 1
D. 2
E. $\frac{9}{4}$
3. If x cows give $x+1$ cans of milk in $x+2$ days, how many days will it take $x+3$ cows to give $x+5$ cans of milk?
A. $\frac{x(x+2)(x+5)}{(x+1)(x+3)}$
B. $\frac{x(x+1)(x+5)}{(x+2)(x+3)}$
C. $\frac{(x+1)(x+3)(x+5)}{x(x+2)}$
D. $\frac{(x+1)(x+3)}{x(x+2)(x+5)}$
E. None of These
4. For how many real values of x is $\sqrt{120-\sqrt{x}}$ an integer?
A. 3
B. 6
C. 9
D. 10
E. 11
5. If $1-\frac{4}{x}+\frac{4}{x^{2}}=0$ then $\frac{2}{x}=$
A. -1
B. 1
C. 2
D. -1 or 2
E. -1 or -2
6. If $\frac{m}{n}=\frac{4}{3}$ and $\frac{r}{l}=\frac{9}{14}$ then value of $\frac{3 m r-n t}{4 n t-7 m r}=$
A. $-\frac{11}{2}$
B. $-\frac{11}{14}$
C. $-\frac{5}{4}$
D. $\frac{11}{14}$
E. $-\frac{2}{3}$
7. The number of distinct points common to the graphs of $x^{2}+y^{2}=9$ and $y^{2}=9$ is:
A. Infinitely Many
B. four
C. two
D. one
E. none
8. When x^{5} and $x+\frac{1}{x}$ and $1+\frac{2}{x}+\frac{3}{x^{3}}$ are multiplied, then the product is a polynomial of degree
A. 2
B. 3
C. 6
D. 7
E. 8
9. Suppose that a and b are nonzero real numbers, and that the equation $x^{2}+a x+b=0$ has solutions a and b. The pair (a, b) is
A. $(-2,1)$
B. $(-1,2)$
C. $(1,-2)$
D. $(2,-1)$
E. $(4,4)$
10. For which values of k does the equation $\frac{x-1}{x-2}=\frac{x-k}{x-6}$
A. 1
B. 2
C. 3
D. 4
E. 5
11. Three men, Alpha, Beta, and Gamma, working together do a job in 6 hours less time than Alpha alone, in 1 hour less time than Beta alone, and in one-half the time needed by Gamma when working alone. Let h be the number of hours needed by Alpha and Beta working together to do the job. Then $h=$
A. $\frac{5}{2}$
B. $\frac{3}{2}$
C. $\frac{4}{3}$
D. $\frac{5}{4}$
E. $\frac{3}{4}$

12 If $g(x)=1-x^{2}$ and $f(g(x))=\frac{1-x^{2}}{x^{2}}$ when $x \neq 0$ then $f\left(\frac{1}{2}\right)=$
A. $\frac{3}{4}$
B. 1
C. 3
D. $\frac{\sqrt{2}}{2}$
E. $\sqrt{2}$
13. If $\frac{1}{x}-\frac{1}{y}=\frac{1}{z}$ then $z=$
A. $y-x$
B. $x-y$
C. $\frac{y-x}{x y}$
D. $\frac{x y}{y-x}$
E. $\frac{x y}{x-y}$
14. If $y=2 x$ and $z=2 y$ then $x+y+z=$
A. x
B. $3 x$
C. $5 x$
D. $7 x$
E. $9 x$
15. If x and y are non-zero real numbers such that: $|x|+y=3$ and $|x| y+x^{3}=0$, then the integer nearest to $x-y$ is
A. -3
B. -1
C. 2
D. 3
E. 5

